Friday, July 26, 2019

Graph Test

If an astronaut “a” leaves Earth “E” and accelerates at 1 G toward Alpha Centauri “AC” which is 4 light years away, he, at the end of a year, as seen from Earth, will be traveling at almost the speed of light. To the astronaut everything is normal, but from Earth he seems to be more and more red and he is becoming “spread out” perpendicular to his direction of travel. His clock is also going slower and slower.

If you think about “a”’s journey in one way, he will not be one-fourth of the way to AC after a year, as part of his journey was spent at sub-light velocities - which is OK as the calculations are beyond my abilities.

If you think about his journey another way, again from Earth, the astronaut will arrive at AC in three more years - so he must have traveled one-fourth of the way the first year.

Maybe I don’t understand relativity ?

Now consider Graph 2 where, about 100000 years ago on a planet on the other side of the galaxy, an astronaut “b” climbed into his spaceship and accelerated at 1 G toward Earth and AC.

There is, of course, the question of how he knew he should do this - but maybe “b” just felt like making a journey to Earth and AC.

It will take light, and any knowledge of the events on the ancient, distance world of “b” to reach Earth. From such a great distance, however, for all practical purposes, the distance to our IS ( Imaginary Star) is the same and the light will arrive at the same time. I doubt that “a” in his spaceship would be aware of “b” until he appeared suddenly and streaked off toward AC.

I used the term “at the same time” above - but the light confirming that the observer on the planet near the IS exists will not reach Earth for four years. Still I can ask what he might see.

Where, relative to the Earth, will the observer near the IS first see “b” 's ship ? I would think it would be approaching the IS until it was halfway between Earth and AC - and would show ultraviolet, at that point, it would move away, becoming more and more infrared. Of course, the observer near the IS would be viewing this in “b” 's past.

It seems to me that from the IS, “b” and his ship would be getting more and more ultraviolet as he approached - but my math is not strong enough to verify this.

If this is true, there is another factor to consider. If the size of “b” increases and his time slows down as he accelerates away, might not “b” shrink and his time speed up as he accelerates toward the IS ? For an observer near the IS, “b” would shrink from sight and then begin to grow again.

At some point, if this is true, the observer near IS would find "b" would be too small to see - again, my mathematical abilities are insufficient to find this point.

I don't have proof for the following but believe it can be found. For "b", his world always feels normal. For an outside observer, for example, the one near IS, "b" ' s speed of light has changed.

Monday, June 10, 2019



BACKGROUND - Our #Elite #Scientists believe in the Big Bang. They believe that almost 14 billion years ago, our universe and everything in it was the size of a “grain of sand”. I have also spoken of place, for the lack of a better word, where time does not exist. I call this place Never Never Land.


I cannot escape now. I can wait one second, two seconds, three seconds–and it is still now. Yet it seems different. And I can't go back to that first now. I can believe in a future now, but I have to wait to get there.

I am here. I can see a here that is over there. But I can't get to it. I am trapped in the here and now.

The problem is the speed of light and a concept I call “close enough”. Although your DNA is different than mine, you are still you and I am still me. Neither of us is a bumblebee. Our DNA is close enough.

We each have our own now. If you were near Jupiter, your now would be separated from mine by an hour. If you are in the same room, we are close enough so we feel we have the same now. We are close enough to build civilizations.

Our scientists tell us that every particle in the universe has been trapped in the here and now ever since our grain of sand beginning. They make this statement based on a billion observations and mathematical calculations beyond almost everyone's comprehension. Only a few particle physicists claim some exotic super-microscopic particles can move through time–and then only a few gazillionths of a second. Anyway, now is not the time to consider this.

Being trapped like this is a Law of Nature. It keeps us from traveling through time. It may also keep us from traveling to other universes. We can imagine things in other universes being trapped by similar laws. I really like to break laws–as long as the punishment is not too severe.

When we were a grain of sand, particles on one side of the grain were trapped in time, just like particles on the other side of the grain. Today, after almost fourteen billions years of expansion, everything in remote galaxies is still trapped in time–just like everything we see around us. Science says this Law is universal.

There are other laws–laws of nature that are universal. Our science can see these laws in action here and, then see things in the remotest parts of the observable universe that confirm these laws are universal.

A law of physics is a rule that nature obeys without exception. Nature obeys this rule everywhere. Our science believes that the results of experiments carried out on Earth would be the same if carried out, under the same conditions, anywhere in the universe. If this turned out to be untrue, our science would collapse into meaninglessness.

A recent study (Dr. Emily Baldwin: "Earth's Laws Still Apply in Distant Universe";; June, 2008) shows that one of the most important numbers in physics, the proton-electron mass ratio, is the same in a galaxy six billion light years away as it is here on Earth-apparently laying to rest the debate about whether the laws of nature vary in different places in the Universe.

At first, I thought Dr. Baldwin had shown that our science is safe from collapse–until I thought longer and harder.

I need to mention a few universal laws of physics–Science prefers the exact language of mathematical equations, but I like English:

Light always travels at an exact speed, close to 186,000 miles per second.

The temperature of a hot cup of coffee will always, over time, fall–until it is no longer hot.

The earth will rotate one time every 24 hours.

The mass of an object causes gravity. Given the same mass and distance from an object, the force of gravity is always the same.

. . . .

I have spoken of the birth of our universe, its long expansion until now, and then its future expansion for almost forever, until we reach a cold, dark, barren universe without time–and I noted or implied that we had returned to Never Never Land. This view seems to say that, with the birth of our universe, timelessness was pushed away, only to return after a gazillion years.

A better view is that Never Never Land is always there, below our universe and every other universe, its gazillion universal genes supporting and defining every particle, force, law of nature, and anything else, that can exist in our universe, or any other universe.

Quantum theory states that two entangled particles, even when separated by light years, are connected; a change to one will be instantly communicated to the other–this is called “spooky action at a distance”.

If our universe lives in Never Never Land, we get something that is, surprising, less complex: “spooky action at no distance”.

Can thought experiments and pursuing strange analogies help explain the laws of nature and why they are universal in our universe? Since our science is stumped by this question, we have nothing to lose by giving it a shot. The first step is to assume there really is a Never Never Land where time does not exist.

Standard Big Bang Theory states that we started as a microscopic dot and after a few gazillionths of a second, we were the size of a grain of sand. This was like the gestation period of a fetus–a time when our universe was being put together. There is also a time in the far future when our universe will be dying. I don't want to consider either of these two times.

I do want to look more closely at the grain of sand time, up until now, and then on to the future. This corresponds to the healthy part of human life, from baby to old man–a time when our cells are doing a billion things to keep us going.

We know that our chromosomes contain genes, groups of rungs on vast DNA ladders, that are needed instructions for our cells. Our chromosomes tell every cell when and how to do a billion things. If we ignore details, we can say DNA defines living creatures in our universe. A living creature could be a heart cell or a liver cell, a human being or a bumble bee or a maple leaf. DNA is telling each creature how to react to its environment, how and when to do the billion things it needs to do.

When I see everything–particles, waves, energy–in the past, present, and future, following complex, but strict, rules, I have to wonder what is the DNA of the universe?

I have spoken of a Never Never Land, a timeless region. It was needed to address cause and effect problems–to show that there did not have to be a “bottom turtle”. Once you accept Never Never Land, it seems the natural place for the code of universes–instructions that run our universe and perhaps a gazillion others.

I want to develop a thought experiment where I imagine mechanisms that let timeless code control universes. It is hard to think our way across the timeless–time boundary that seems to exist between us and “there”. In describing these mechanisms, I want to put off as long as possible using pretty phrases that mean “we don't know”. By this, I mean phrases like “spooky action at a distance” and “spooky action at no distance”.

I have speculated that gravitons and time particles exist in Never Never Land and our universe may have started when one of each combined–the time particle providing the essence of our time. Another, different possibility, is Never Never Land holds not gravitons and time particles, but vast collections of code, or timeless genes. Some of these genes define our time and everything else in our universe.

Other genes, gazillions of them, code for other universes. It is important to remember that these genes are timeless–they may not code for universes that begin or end. Also, being timeless, a gazillion genes could make up strands of genetic material whose length stretches forever, or has no length at all, or has any length in between.

I can think of one example that may be analogous, more or less, to how the universe works. The cells in our bodies, as well as, the entire universe, need information to operate. This information comes from genes, either regular or timeless.

Imagine a large city with a couple of million houses, each with one TV and cable service. The cable service, like our chromosomes, or perhaps a timeless version of our chromosomes, offers a vast array of information. A particular house, a particular TV, is set for only one channel. This house is like a skin cell, a white blood cell, or a neuron; or maybe this house is like our universe, while another house is another universe.

Our science knows a lot about how our cells communicate with and are affected by our chromosomes. The most difficult thing I have tried to imagine, the most difficult thought experiment, involves answering this key question: How can our universe communicate with and be affected by timeless chromosomes?

Everything, every process, we see in our universe, is time based. We are moving through time, from past to future. We are in constant motion. How can we communicate with a timeless world that just is? We cannot walk around this world because nothing changes–and walking implies change.

Part of the answer, I believe, is shape.

A timeless gene has shape.

In our world, shape is important. Prion diseases–also known as transmissible spongiform encephalopathies (TSE's) are some of the most insidious maladies known to Man. These illnesses are progressive neurogenerative conditions that can afflict both animals and humans. The first TSE was identified in the 1730s. This was Scrapie, a disease affecting sheep and goats.

Scrapie is related to the more famous bovine spongiform encephalopathy–mad cows disease.

Humans can get a version of mad cows disease by eating contaminated meat. The disease is always fatal. Even well cooked meat is dangerous. The good news is prion diseases are extremely rare.

What do prion diseases have to do with shape? Here is a simplified explanation leaving out many steps.

Healthy animals build a protein called a cellular prion protein. This protein is primarily expressed in the central nervous system and brain, but can occur in many parts of the body. Rarely, maybe because of a mutation in a critical gene, a prion is built that is the same as a normal cellular prion, but it is shaped wrong. What is worse, when this prion meets a normal prion, it changes it to the bad shape–resulting in a cascading destruction of normal cellular protein and death. Shape is important.

In biology and organic chemistry, the shape of molecules is just as important as the atoms that make up the molecules. Shapes will determine if molecules fit together, like a key in a lock, or not. Shapes will determine if molecules move together or drift apart. Shapes will determine if life supporting chemical reactions occur, or not.

I can imagine a timeless gene or timeless chromosome having a shape. Being in timelessness, this shape can never change–yet it can. Let me explain what I mean.

If you could look at a timeless chromosome, it might exist in many dimensions, with its shape traversing all of these. For simplicity, let us just look at only two dimensions. In this case, part of the chromosome could be shaped like “WW”. Anything above the “WW” is inside the chromosome and is part of Never Never Land.

Let me now ask some questions similar to questions asked before and see if we are not enlightened by some refined answers:

What is the length of the timeless chromosome?

How tall is the “WW”?

What is the length of each of the eight lines that make up the “WW”?

How thick is each line? What far is it from the top of the right line in the left “W” to the top of the left line in the right “W”?

We may have implied that these questions have no meaning because we are in Never Never Land. But let's reconsider.

When we were discussing the Big Bang, we pointed out that it seemed like at the very first moment a particle could be half in, half out, of our reality. Part of it could still be in Never Never Land. It could have a real, measurable length, but an imaginary width. We then pointed out that, by changing our frame of reference, we could make length the width and vice versa. We then came to the weird conclusion that the length of object, or even if the object had length, could depend on how you looked at it.

Maybe the answers to the above questions depends on our universe's relationship to Never Never Land, on how it sees Never Never Land. What it sees today could be very different than what it saw when it was a grain of sand.

Every entity in our universe could contain a unique shape, a key that fits into a specific lock in Never Never Land. The timeless “WW” lock sits on top of a “^ ^” key (each “^” fits into the bottom of a “W”). As our universe expands, a gazillion keys grow–and yet, the “WW” lock is not broken. Our universe changes it frame of reference, how it looks at the timeless chromosome. The “WW” lock is always the right size.

Notice that nothing inside the chromosome has changed. It is still static and timeless. It has an unchanging shape. Only our frame of reference changes. Perhaps there is no gene for time. We may feel the changes to our frame of reference as the passage of time.

Bosons are particles that can occupy the same space at the same time. Since a gazillion keys can connect to one timeless lock, these keys, which are part of our universe must have boson-like qualities.

We have asked about the length of lines that make up the lock or the key and have said the answer may be based on our frame of reference, or we could even say the answers are based on what our universe needs. But we also asked about the thickness of the lines–how close is our world of time to timelessness?

As the “WW” lock grows as our universe expands, we could imagine that the eight lines also grow in thickness. In our world, especially our quantum world, lines, or the particles that make up the lines, also have a wave like nature. The lines are fuzzy and we can't be sure where they are. In our quantum world, particles can tunnel through impenetrable barriers.

I can imagine a fuzzy line, part of the lock in Never Never Land, sitting next to a line in our world, part of the key. Using quantum like rules, the fuzzy line could sometimes “tunnel through” part of our key–pulling it and part of us into a timeless world. Once there, there is no distance. We can be next to any gene, any set of instructions, in the timeless chromosome. Maybe we could read the instructions by changing our perspective, our frame of reference. Could we find clues to who wrote the code?-or is that a time based question in a timeless world?

If you viewed ours and a gazillion other universes from the standpoint of Never Never Land, it is us that is static, timeless, and unchanging. We are a grain of sand; we are building pyramids; we are being born; we are dying; we are expanding into dark, barren, nothingness. It is just a matter of how you look at us–it is just a matter of your frame of reference.

. . . .

I can never escape the here and now. Perhaps every particle in me contains timeless chromosomes with timeless genes that tie me to this universe, this now.

Maybe I can find the proper expert. Maybe he knows how to splice regular genes.

Maybe he can figure out how to splice timeless genes. Maybe he can free me from the here and now.


Wednesday, February 6, 2019

Note on Aging

02-06-19 - I like to think that by being a #deepthinker I can come up with #unique thoughts. These thoughts are documented in my ebook now available on #Amazon. I found this thought, however, well documented by another writer - I would give him credit, but can't find him on the web anymore.



Posted in 2011 -->

I was listening to "Coast to Coast" with George Noory. It was mentioned that time seems to pass faster as we age. The guest, with his sophisticated nasal twang rambled on with a report of his pseudo-scientific philosophies that pretended not to ignore the question.

Many have noticed how relative time is (not in an Einsteinian Syntax). Everyone knows that "time flies when you are having fun".  And it goes even faster when we are sleep. On the other hand, it drags when we are bored.

I have never seen a scientific discussion of this phenomena.  It may be that we think about this as part of an overview of how we see reality and thus a question for psychologists or philosophers.

I think that this subject should be addressed by Biologists or Neuroscientists. With a little thought, however, a non-biologist like me can come up with a reasonable theory.

It is common knowledge that we slow down as we age. The clock tells me my daily walk (3 miles) takes me longer than it did ten years ago.

How does our Brain/Mind perceive Realty, which includes our perception of the passage of Time?

Without getting all philosophical on you, I don't think we can answer that question. But, I do think we can understand how an older, slower mind would perceive time as passing faster.

Suppose, a Grandfather and his Grandson look at the world and both, while blinking, think "what a beautiful day!". If it takes the Grandfather slightly longer to have this thought, will it affect his perception of the passage of time?

We can show that it would if we visualize a world where we think drastically slower as we age. Here, the Grandson would have "time for" thousands of thought per day, while the Grandfather would only have "time for" a few.

In this world, both Grandson and Grandfather would feel that it took little time to have the thought  "what a beautiful day!" - after all, how long can a thought take? But after only a few thoughts, the day would be over for Grand Dad - the days would fly by.

(If you liked this article, "Like" my Clients -  Like Tomsin Steel and our Other Clients )

Tuesday, February 5, 2019

Modifications to Book Like No Other - everything is connected

ProLogue -     (02-05-19) -

Introduction - (02-05-19) -

Chapter 01 -    (02-05-19) -

Chapter 02 -    (02-05-19) -

Chapter 03 -    (02-05-19) -

Chapter 04 -    (02-05-19) -

Chapter 05 -    (02-05-19) -

Chapter 06 -    (02-05-19) -

Chapter 07 -    (02-05-19) -

Chapter 08 -    (02-05-19) -

Chapter 09 -    (02-05-19) -

Chapter 10 -    (02-05-19) -

Chapter 11 -    (02-05-19) -

Chapter 12 - (Wood, Not Bubble)    (02-08-19) - It has always amazed me that most humans are so arrogant that they refuse to recognize the intelligence of the creatures around them - they say mankind is at the top of the evolutionary chain.

     In this Chapter, I have said "A cell is so large that, whether or not it lives in a man or a wood bee, it may well be able to support the chemical reactions needed, not just to make life possible, but to actually think. The power of neural networks made up of many cells tied together is close to infinite."

     I recently saw a video of a white blood cell called a neutrophil chasing a bacterium. The bacterium desperately tries to escape, while other bacteria calmly go about their business (I think one was trying to infect a red blood cell). It seems to me that all participants are aware of their surroundings and situation - to me, some kind of thinking is the most likely explanation.




Chapter 13 -    (02-05-19) -

Chapter 14 -    (02-05-19) -

Epilogue - One Man's Foot (03-26-19) - From E-Book (Repeated for Convenience)


I don't want to forget my foot. It has stayed here in this universe we know and love while my mind has wandered somewhere else. Now I think of my foot and know I should return here and look around. Can I find anything that supports my strange thoughts? Does what our universe looks like indicate that Never Never Land may really exist?

I have invented what I call the Never Never Land Theory – what I will call “My Theory”. Perhaps the best known theory about reality and our universe is the Big Bang Theory – the BBT. Can I show that my theory is better than the BBT?

Albert Einstein's Theory of Relativity did not replace classical physics and Newton's Laws of Motion. For most of the world we see around us, classical physics was, and still is, adequate. For almost all practical purposes, it is just as good as Einstein's theory. Why then is Einstein's Theory considered a better view of reality than that provided by classical physics? Why is it considered superior?

The short answer is Einstein answered questions that classical physics did not. Classical physics could not, for example, explain where the sun got enough energy to shine for five billion years. The answer, nuclear energy, was not just academic – it led to massive industries in our real world.

 In the same sense, I want to show that my theory is superior to the BBT. Then we can see if there are practical benefits.

I need to relate to you what I think our BBT experts see when they look at our universe. There are a lot of these experts. I don't think they are all saying the same thing. When they find things their equations do not explain, they often speculate. These interesting speculations are neither more nor less valid than yours or mine.

I am tired. I am tired of thinking longer and harder. I am tired of googling obscure words and topics. I will write in English, not incomprehensible mathematical equations. The results will be that some of the details may be wrong, or, at least, not exactly right. Feel free to improve on what I write – but when you are finished, ask yourself: Does what we observe point to our experts' view of reality or a Never Never Land?

If we gaze out into the universe, we are looking into the past. When we look at Jupiter, we see the light that was reflected from its surface, perhaps an hour ago. We are seeing Jupiter as it was an hour ago. When we look at a far away galaxy, we are seeing it as it was several billion years ago. We are seeing this galaxy as it was when it was part of a smaller universe.

Our scientists believe that the first galaxies formed about a billion years after the Big Bang. The universe was much larger than a grain of sand, but much smaller than it is today. These far away, dim galaxies are at the outer range of our most powerful telescopes. You would expect that since the universe was smaller then, the galaxies would be more closely packed. Yet this doesn't seem to be the case.

The expansion of the universe started everywhere and is still going on. The BBT experts believe this because they see ancient, far away galaxies no matter which way they point their telescopes. My theory believes the universe is expanding everywhere, but it did not start. But I am getting ahead of myself.

Our BBT experts think in terms of a minimum time, a minimum distance, and a minimum size. When they see every galaxy in sight moving away from what they think is a central point, they can imagine a time when everything was closer together and more condensed. With lots of calculations, they have determined that everything was in the same place about 14 billion years ago. Assuming there is a minimum size, our Science has calculated the density and temperature of our universe when it was about the size of a grain of sand. Both were close to infinity. Today, with galaxies spread all over the place, it is hard to determine the density of the universe. On the other hand, after some impressive measurements and calculations, science has made a major discovery. The calculated temperature, after 14 billion years of expanding and cooling, of our universe is almost exactly equal to the measured value. The experts have excitingly claimed that this result proved the Big Bang Theory. Our cosmic-sized universe had started as a microscopic dot. If there is no minimum time and size, my theory must duplicate these results before moving on to explain phenomenons that BBT fails to adequately address.

The BBT experts were excited about the Cosmic Microwave Background (CMB) radiation, the remnant heat left after the universe has been expanding for 14 billion years. Its measured value is slightly above absolute zero – this agrees with the experts' calculations. Our science considers this CMB results a cornerstone of the BBT.

Our science believes that there are certain laws of nature that are universal. The speed of light, for example, is the same everywhere. We have mentioned the proton-electron mass ratio which our Science has shown is the same here and in a galaxy six billion light years away.

My theory predicts that CMB radiation is a law of nature – it is constant everywhere.

Radiation is the same as temperature. For clarity we can speak of the temperature of the CMB. My theory states that the temperature of the CMB is the same everywhere. The BBT believes the temperature of the CMB falls as the universe expands.

Can we decide which view is correct? Maybe.

We need “fair” measurements of CMB. Some could be close by, but some might have to be near the outer bounds of the observable universe. Astronomers observing the universe without preconceived notions might be able to do the impossible.

The BBT believes the universe started as a microscopic dot and was soon the size of a grain of sand. If this grain of sand universe were here and now, it might blow past our face and settle on a yardstick. It might come to rest between the smallest graduations – two lines set a tenth of an inch apart.


Epilogue     -    (02-05-19) - (addition 1  -->

According to the BBT, every particle in our universe, gazillions of them, are confined to this grain. Each particle could be the size of a BB, all compressed together. The pressure and temperature would be immense. If, as NNLT proposes, there is no minimum size, or it is a gazillion times smaller, each BB could be smaller than a speck of dust – with each speck tied to the timeless chromosome. Particles float in a vast, expanding space. Creatures like us could live there.

Both the BBT and NNLT address the Past and Future and get the same answers, but for different reasons. The BBT says there is a minimum time, Planck's time. Now lasts for a Planck's time. Before this Now, there was the Past. After this Now, the Future starts. BBT says we cannot see the Future – it may not even exist. NNLT says both Past and Future exist and agrees that we cannot see the Future. It is the existence of Now that is in question.

According to BBT, our grain of sand universe could not float past our face and settle on a yardstick – it is gone, in the past. According to NNLT, our grain could be anywhere and everywhere.

One of the universal laws of physics is that the speed of light is 186,282 miles per second. In terms of our yardstick, light can travel the length of about 327 million yardsticks each second. Very fast – but if our grain of sand universe tried to use our yardstick as a unit of length, as the BBT wants, the speed of light for our grain universe would be a gazillion times faster. While light takes billions of years to cross our universe, it would cross the grain of sand instantly. NNLT sees this as a problem and solves it by changing the yardstick. Light in the grain still transverses 327 million yardsticks in a second – but its yardsticks and seconds are not the same as ours – both are a gazillion times shorter.

The BBT says The Big Bang is in the past, long gone. For the NNLT, past and future are more nebulous. They depend on how you look at it. The Big Bang did not happen and Now may not exist. Before calculating the distance to where the BBT says the Big Bang should be, the NNLT asks if the measurements are in our yardsticks and years, the yardsticks and years of the universe when it was a grain of sand, or at some point in between. Thinking about this makes my head swim, but since I am the only NNLT expert, I would guess the NNLT would say the Big Bang occurred 10 – 12 billion of our years ago. A good mathematician or even someone who is not tired could come up with an equation.

Even for short distances, like for less than a few billion light years, the BBT and the NNLT do not view past and future in exactly the same way.

We have discussed two observers, one on earth and the other near Jupiter. If light takes an hour to travel this distance, each can only see the other as he was an hour ago. The “real” version of both is in the others' future. If these two observers each had a powerful telescope, they could watch the other living his past life. Why? Both observers are moving into the future at the same speed – the speed of light.

Both the BBT and the NNLT believe you cannot see the Future – the finite speed of light keeps you from seeing any future events. The NNLT can, however, give more detail (if part of this explanation is wrong, it doesn't invalidate NNLT).

ADDED 02-23-19 --

According to the NNLT, if you exist in this universe (which is determined by your connections to the timeless chromosome), the boundary between past and future is moving at the speed of light. One second after you experience now, you are experiencing a new now that is 186,282 miles away. The “old you” is too far away to be seen.

This “old you” is a light second away if we are thinking in three dimensions – the part of reality we can see. Actually, the gazillion particles in each of us could have a gazillion dimensions – each under the control of timeless genes. Perhaps some of these genes connect us to the past or the future.

The BBT and the NNLT think about our two observers, one near Jupiter, the other on Earth, differently. The BBT gives our earth bound friend special status – his Now is real. His special status has led to what we have called the “Twin Paradox”.

Suppose our two observers are twins. One is named Jason and he travels to Jupiter. The other, Ethan, remains on Earth.

Now let us change the story. Jason travels not to Jupiter, but to a distant star. For most of his journey there and back, he is traveling near the speed of light. According to Einstein and the BBT, Jason's time passes more slowly (although he is not aware of it). Ethan has his own time, passing at a different rate. Jason will find that when he returns to earth, he will be slightly older while his brother will be many years older. If Jason travels far enough and fast enough, he may return to Earth still young but find that eons have past here.

Einstein's theory is called the Theory of Relativity because time (and other things) are relative to the observer – to Ethan or Jason. Many experiments have confirmed the Theory of Relativity and the BBT believes it is true. The NNLT does not.

Experiments that confirm Einstein's Theory are conducted in an environment where time exists or is assumed to exist, namely, our universe. I would hope that experiments could be designed that are shielded from the effects of time, but it is more likely that the NNLT will find support from Astronomers observing galaxies at the edge of the observable universe.

ADDED 02-27-19

If we now return Jason to his place near Jupiter, we can continue to explore differences between the BBT and the NNLT.

The NNLT gives no special status to either Jason or Ethan. Jason cannot see Ethan's Now because it is in Jason's future. He can only see Ethan as he was more than an hour ago. Ethan cannot see Jason's Now because it is in Ethan's future. He can only see Jason as he was more than an hour ago.

The last paragraph is full of “time based expressions”, but that is not how the NNLT views the “Now”s of either Jason or Ethan.

One or more of a gazillion timeless properties may define the time direction of both Jason and Ethan. We can only see and interact with things in our world that have properties that are “close enough” to our properties. When Jason and Ethan are separated by one light hour, neither could ever stand next to the other and interact. If this could happen, however, Jason might sneeze “at the same time” that Ethan coughs. Just because the brothers are separated by a light hour does not mean they cannot sneeze and cough at the same time. The NNLT says each brother has his own Now, but these “Now”s are close enough that we view them as the same time – even though time does not exist.

The BBT views the Now of Ethan as special and as the only real Now. The NNLT views both Ethan's and Jason's Now as real. The BBT theory views any past Now, either remembered by a twin or viewed through a telescope by the other twin, as gone, dead, no longer in existence. The NNLT believes there are a gazillion “Now”s and each is just as real as any other. This has always been true and always will be true – unless a Now is more than several billion light years away. Then things get complicated.

We are talking about entities whose timeless properties are close enough that we might interact with them or, if not, at least they are close enough that we can imagine what they may be like. I can imagine a universe where the time direction is different, where things seem to move from the future to the past, where the future is remembered and the past discovered, where effect comes before cause. Beyond that, I cannot imagine how a society living there would function.

We can imagine standing beside our yardstick with its small grain of sand universe resting at one end. We can then ask if the BBT or the NNLT better describes the universe we see around us.

The BBT says the grain of sand universe can not be there, but if it were, it would be almost infinitely hot and dense – as well as, about 14 billions years in the past. Looking to the sky, we see galaxies moving away. The BBT tells us all of these galaxies originated at a common point. When we note that the far away galaxies are moving away faster than the nearer galaxies (our Science has discovered this fairly recently), BBT explains using exotic concepts like negative energy of space, dark energy, and dark matter. Maybe some other things, but I have tuned out. I am tired and my head is beginning to spin. I don't like for my head to spin. Anyway, BBT may have some valid points here. You decide.

Imagine that our yardstick is touching another yardstick just to its right, in fact, there is a long line of yardsticks laid out. There are enough yardsticks to cross the universe.

If you started walking, a mile later you would be passed 1,760 yardsticks. If you were in really good shape, you might continue walking until you had passed 327,360,000 yardsticks. If you then paused to rest, you could set up a telescope and look back and see the first yardstick with its grain of sand universe. Light could transverse the distance between you and that first yardstick in one second.

*** ADDED 6/4/2019

If you continued your stroll until you had passed (327,360,000 times 60 times 60) = 1,178,496,000,000 yardsticks, you would be one light hour from the first yardstick – the distance between Jason near Jupiter and Ethan on Earth.

If our yardsticks were laid out between Ethan and Jason near Jupiter, you could walk up to Jason, take off your space helmet, and start a conversation. If you had been walking a brisk four miles per hour, both you and Jason would be about nineteen thousand years old.

After a short rest, you might decide to continue your journey. You could walk out of the solar system and then turn around a look back toward Jason and Ethan. If your eyes have held up for the 570,000 years you have been walking, you could see Jupiter and, with a telescope, Earth.

If you continued your journey for another 444 million years, you could walk out of our galaxy. You would be about 80,000 light years from Earth.

Our Science today has some very powerful telescopes. If you had one of these with you, you might stop and turn it back toward Earth. If it were not for the bright light of the nearby sun, you could see Jupiter, you could see Earth, you could see Ethan as he was 80,000 years ago, you could see the first yardstick, and you could see the grain of sand universe resting on that yardstick.

If you had a spaceship that could travel at the speed of light, you could save a lot of your time – or since time doesn't exist, what feels like to you is a lot of time. You would have to travel 170,000 light years to reach the nearest galaxy. After a billion light years, you could look around and see many galaxies floating through space, some close, some far away. Using your powerful telescope, you could see about two trillion galaxies.

One of the closer ones is our Milky Way. Looking back, you can see an Ethan from a billion years ago, standing next to a dim grain of sand universe. Using your spaceship, you could return and talk to him. Thomas Wolfe wrote “You Can't Go Home Again”. Maybe he was wrong.

You turn your telescope in another direction. Any direction. You can barely make out a dim far away group of galaxies. Are they moving away? Or it is you?

Does what you see lend more support to the BBT or the NNLT?

When the BBT looks outward into the cosmos, it sees a gazillion galaxies moving away. It sees space as expanding from a single point carrying these galaxies, and ours, with it. There is no outside of this space.

Science writers try to illustrate this situation by drawing dots on a balloon – each dot representing a galaxy. Since they cannot draw a gazillion dots, they usually settle for three, one representing our galaxy, and two others. The writers then note that as the balloon is inflated, the dots move apart. They may also note that the further apart two are, the faster they separate.

The galaxies we see are not uniformly spread out across the universe. There seems to be strings of galaxies separated by vast voids of nothing. I think I understand the explanation of a lot of BBT scientists for this (I am not sure – they speak geek, not English). When our universe was young and grain-size, it contained areas that were slightly cooler and more dense. As the universe expanded, gravity collected these areas, ultimately forming galaxies with intervening voids. Some science writers have called these galaxy-void structures fingerprints from the Big Bang.

The BBT believes in time and time started with the Big Bang. What does this say about the super hot, super dense material in the grain of sand universe? Was the material that became our galaxy, our sun, our Earth, us special? Was it near the boundary between space and non-space while other galaxies sprang from deeper in the grain. They would appear later and, just as our observations seem to confirm, be in the past.

Still, I don't think that is exactly what the BBT is saying. I apologize, all of this is hard to visualize.

The BBT sees all of the grain growing at the same time. As the grain grows, some parts gain cooling material leaving voids. After a billion years, the first galaxies with voids would form – this early galaxy-void structure could be similar to or the same as the cosmic fingerprints our Scientists have seen stretching across the cosmos.

It is also interesting to note that our Scientists believe that the universe did not become transparent until the first atoms formed. This would be when the temperature of the CMB had fallen to about 3000 degrees Kelvin. Until this point, you could not see around the universe (light was reabsorbed as soon as it was produced).

Based on their calculations, our BBT experts believe that the early universe became transparent at the same time or a little before galaxies appeared. Our BBT experts believe, not based on their calculations, that the universe became transparent before the galaxies appeared – after all, galaxies are made of atoms and it took time for atoms to form galaxies. The NNLT believes the CMB has always been slightly less than 3 degrees Kelvin, the universe has always been transparent, and the galaxies have always existed.

If there are fingerprints on our billion year old universe, we may have telescopes that can see them. Study of their structure might support the BBT or the NNLT.

We would not expect to find an earlier version of our galaxy among those in the billion year old universe. Gravitational forces could churn nearby matter, building and destroying galaxies. These local effects would dwarf space expansion.

The BBT does not believe in the future. It hasn't happen yet and the fact we see no future galaxies in the sky seems to prove this. It gives special status to Ethan's Now on Earth and says Jason's Now has not yet happened. The BBT says that the future is any place you have to travel faster than the speed of light to reach, and, since you can't travel faster than the speed of light, the future does not exist.

What happens if we apply BBT thinking to the vast universe we see when we look outward? Our galaxy is made from a scrap of material that has been carried outward by expanding space. We can look back almost to the dot from which we came. We can also imagine another scrap of material – galaxy being carried in a different direction.

If we viewed these two galaxies in two dimensions, as if they were on a sheet of paper, our galaxy could be viewed as moving from a dot on the left, horizontally across 14 units to Now. In this case, each unit is one billion light years.

We could view the second galaxy as moving up, vertically. The BBT views space as expanding at a constant rate so this galaxy would also be 14 units from, and directly above, the dot. How far from us is this galaxy? The BBT experts and millions of math students could quickly find the answer.

The two lines we have drawn plus a line from our galaxy to the other galaxy form a right triangle. The third line is the distance between the two galaxies. The Pythagorean theorem states that this distance is equal to the square root of the sum of the squares of the other two sides; or, in this case: the SQROOTof ((14 times 14) plus (14 times 14)) = SQROOTof (196 plus 196) = SQROOTof (392) = 19..8.

The two galaxies are 19.8 billion light years apart.

The BBT experts would say that we and our galaxy obviously exist, but the second galaxy does not. They reason as follows: When the universe was a grain of sand, both galaxies (or their ingredients) were obviously very close. Now, 14 billion years later, they are separated by 19.8 billion light years. To get this far away, the second galaxy would have to move faster than light (about 263,000 miles per second). This is impossible, so the second galaxy does not exist.

*** ADDED 06-27-19

We have calculated the distance and speed of this other galaxy as we see it Today, 14 billion years after the Big Bang. We are saying the Distance (14) = 19.8 billion light years and Speed (14) = 263,443 feet per second. Using the Pythagorean theorem, we can calculate other values, for example, the distance we would have observed a billion years ago – Distance (13); or the speed a billion years after the Big Bang – Speed (1); or the distance a billion years in our future – Distance (15); or the speed half way back to the Big Bang – Speed (7). Below is a table where we have done this:

Distance (15) = 21.2 Speed (15) = 282,260

Distance (14) = 19.8 Speed (14) = 263,443

Distance (13) = 18.4 Speed (13) = 244,625

Distance (12) = 17.0 Speed (12) = 225,808

Distance (10) = 14.1 Speed (10) = 188,173

Distance (8) = 11.3 Speed (8) = 150,539

Distance (7) = 9.9 Speed (7) = 131,721

Distance (6) = 8.5 Speed (6) = 112,904

Distance (4) = 5.7 Speed (4) = 75,269

Distance (2) = 2.8 Speed (2) = 37,635

Distance (1) = 1.4 Speed (1) = 18,817

For the last four billion years, the speed of this other galaxy has exceeded the speed of light. Light from this galaxy has not had time to reach us and since this speed is increasing, it never will. The BBT experts speculate that space can expand faster than the speed of light, but have only used this idea to explain early, pre-grain-of-sand expansion, not to support the transportation of galaxies.

When we left Jason in his light speed capable spaceship, he had traveled a billion light years, to Distance (13). The BBT doesn't know what Jason is seeing or even if he exists. The only Jason Ethan and the BBT knows about is a billion years in the past. Perhaps Ethan would agree that even the past Jason couldn't see the other galaxy – besides not existing, it is still too far away for the past Jason to see. According to BBT experts, this galaxy would only spring into existence when Jason had traveled more than four billion light years and was between Distance (10) and Distance (9) and was more than nine billion light years from the Big Bang. The BBT would not expect this galaxy to appear like the Andromeda Galaxy, a few million light years away and easily seen. It would be a fuzzy distance object that Jason could barely discern through his powerful telescope.

If Jason happened to be of the BBT persuasion, he would believe that he could only see galaxies as they appeared in the past. A closer galaxy might be 100 million light years away and he was seeing it as it existed 100 million years ago. Another galaxy might be a billion light years away and he was seeing it as it existed a billion years ago. Jason would then decide that the fuzzy remote galaxy that had just appeared must be within ten billion light years. Otherwise, it is further away than the Big Bang, which is impossible. We might also note that if Jason continued his journey, when he arrived at Distance (1), the distant galaxy could be no further away than one billion light years.

I don't want to forget my foot. I am still in this universe, but I am with Jason billions of light years away. My foot is firmly planted on Earth when Jason and Ethan said good-bye. My leg is getting pretty long.

I need to think a little more about this remote Jason and how the BBT and the NNLT interprets his observations. Then we will return to Earth and see if we can imagine experiments or observations that might confirm or debunk the BBT. Maybe things we already know, once reinterpreted, will show the Never Never Land Theory is a better, more comprehensive explanation of reality.

Science writers often excitingly report facts. They are excited because they don't consider the big picture. They forget the importance of scale.

Consider, for example, what is called the Local Group. This is our galaxy and more than fifty other close by galaxies that are held together by gravity and are moving through the universe together. They are being pulled toward an area of intense gravity called the “Great Attractor” which is about 250 million light years away. We can't see the Great Attractor – our line of sight passes near the center of our galaxy which blocks our view. Since we and the sun are revolving around the center of the galaxy, our view will eventually clear. We shouldn't have to wait more than forty or fifty million years to see what we are moving toward – or maybe we should say, falling into. Anyway, patience is a virtue.

A science writer will also breathlessly report that our galaxy, in fact, the entire Local Group is moving at a phenomenal 1.3 million miles per hour. This is 361 miles per second.

Now let us change the scale. Jason has traveled to Distance (7) and is considered by the BBT to be half way to the Big Bang. He decides to stop and look around. He is twenty eight times as far from our Milky Way Galaxy as is the Great Attractor. Light from our galaxy would need seven billion years to reach him. If Earth was on a collision course, closing at a rate of 361 miles per second, Jason wouldn't have to worry for at least 3,600 billion years. The galaxies in the sky would be frozen. Each would be rotating, but so slowly that Jason would have to watch for millions of years to notice any changes.

Jason believes in the BBT, so he expects to be in, after all this traveling, a smaller universe. As he has traveled, he has expected more galaxies to pop into view. There should now be more than two trillion galaxies in the universe and the temperature of the CMB should be higher.

To confirm what he has found, Jason decides to travel to Distance (1) or even closer to the Big Bang.

Jason is now within a billion light years of the Big Bang, but we need to continue to remember that the BBT worships Ethan's Now as somehow special. Jason is in Ethan's past – in this case, about 13 billion years in his past. This past is dead and gone. There is no Jason sneezing at the same time as Ethan coughs. Ethan thinks this ancient Jason lived in a smaller, hotter universe. He could never see Ethan who really exists because Ethan lives 13 billion years in this non-existent Jason's future.

The NNLT does not believe any of this. It believes that, for the most part, the traveling Jason would continue to see the universe the same as the stay at home Ethan. One exception would be Jason's view of the sky. When he was not near a galaxy, the sky would be full of unchanging galaxies and dark voids. Any star he could make out through his telescope would be confined to one of the galaxies.


Before we return to Earth, however, let us linger with the traveling Jason.

The NNLT says two particles are in the same universe if their respective properties are “close enough”. A particle can have a gazillion properties, but we are concerned here with the ones that determines our experience of time. These properties are timeless, but they have something like a direction that works with timeless genes. This direction determines how a particle views time. Here we will name one group of particles Ethan and another group Jason.

The NNTL is based on the concept that “it all depends on how you look at it”. Jason and Ethan can only be in the same universe if their mutual time properties are directed toward the Big Bang. They both feel this is their past. Additionally, their mutual time properties must be directed toward another Big Bang – one neither can see. This is their future. Both must be on this line to be in the same universe. There can be a gazillion versions of each, all feeling that their border between past and future is a unique, special Now.

Another possibility is there is only one Big Bang with a structure similar to Earth with its magnetic field. Many school children have seen the shape of his field when they shake iron filings onto a sheet of paper above a hidden magnet. The filings align themselves so they show the magnetic field around the magnet. This field moves out from the north pole of the magnet before eventually returning to the south pole. In our case, a line emerges from the North Pole with a gazillion “Now”s attached and moves toward the future. Eventually it circles back and returns to the South Pole.

If Jason and Ethan are in the same room, each is seeing the other as they were in the past. Light moves so quickly, however, that the “real” versions are identical to the past versions and the two can interact.

When Jason is near Jupiter and televises back to Earth, it takes about an hour for his image to arrive. Ethan sees a past version of Jason, an old Jason. Now the “real” version of Jason, the time when Jason and Ethan have the same Now, is no longer visible. The old Jason is a light hour from the “real” Jason. The old Jason is too far away to be seen by the “real” Jason. The “real” Jason is in the old Jason's future.

After an hour, the old Jason will become the “real” Jason. He will have a “real real” Jason in his future.

Ethan would also have an old Ethan from his past – the invisible Ethan from an hour ago. Ethan could not see the old Ethan, but the “real” Jason, through his telescope, could. They are both moving into the future in the same direction, at the same speed.

In our universe, one billion light years is a pretty decent hike. The NNLT predicts that, even when Jason and Ethan are separated by this incredible distance, they will continue to view each other and their gazillion versions, the same as they do when they are a mere light hour apart.

When Jason and Ethan are separated by a billion light years, each can see a billion year old version of the other. This old Jason and old Ethan have the same Now.

When you separate Jason and Ethan by seven billion light years, however, the apparently permanent rules fall apart. The NNLT view of reality changes.

At seven billion light years of separation, neither Jason nor Ethan can, no matter how powerful their telescopes, see an earlier, older version of the other.

If Jason has moved toward the Big Bang and is now at Distance (7), his universe and everything in it would have shrunk. Jason would seem to be, if Ethan could see him, half as tall (This is not to say that Ethan and Earth are special. If Jason had traveled away from the Big Bang, out to Distance (21), he would be the giant, twice as tall as Ethan).

If Jason's spaceship could come close enough to light speed, he could have arrived at Distance (7) a few seconds after leaving Ethan. Everything would seem normal to him, but his yardsticks would only be eighteen inches long. The speed of light would be about ninety three thousand Ethan miles per Ethan seconds, i.e., light has slowed down.

Why can't Jason and Ethan ever view an old version of the other?

From Ethan's viewpoint, he is moving into the future at a normal 186,000 miles per second. Jason is in the past and is moving to the future at 93,000 miles per second. Jason's light will never catch up and Jason will fall further and further into the past.

From Jason's viewpoint, he is moving into the future at a normal 186,000 miles per second. Ethan is in the future and is moving to the future at 372,000 miles per second. Jason could never see a version of Ethan.

Jason could continue to shrink while Ethan grows, but, with all obvious connections severed, past and future no longer have meaning. Both are outside our universe. We could imagine a gigantic Ethan standing by a yardstick, looking down at Jason's grain of sand universe. Jason might live a gazillion lifetimes while Ethan is starting to blink. Ethan is a statue, never moving – like a timeless chromosome.

One more question before I remember my foot and return to Earth: Can you think of any non-obvious connections?
. . . .

Our expert cosmologists have used many amazing instruments to observe and understand the universe. They have used much of what they see to validate the Big Bang Theory.

I do not know all of the details of these observations, but I know enough to discuss and ask questions. I want to know if these observations or observations we could make support or debunk the BBT. I want to know if these observations or observations we could make support or debunk the NNLT.

We have detected about two trillion galaxies in our universe. Almost all of these are far away. Unless we are looking toward the center of our galaxy where there may be intervening gases and nebulae, we should have a clear view. If we can see a galaxy five billion light years away – Distance (9), we should be able to see a closer galaxy at Distance (11) if the closer galaxy is “close enough” to our line of sight. Similarly, if we can barely make out a galaxy near Distance (14), we should be able to see galaxies at Distance (13) and Distance (12). We could label these respectively as type 13 and type 12 galaxies and ask questions about each type.

I suspect our BBT experts have already done this and have had to invent some strange concepts to explain the results. Why do I only suspect and not know what our experts have done? Unfortunately, Google does not always give simple answers to simple questions.

We have been talking and doing calculations based on galaxies great distances from Earth – the Big Bang, we have said, occurred 14 billion years ago. Galaxies near that event are almost 14 billion light years away. Before we ask questions about types of galaxies, we need to discuss if these distances are accurate.

Our Science is confident that the Big Bang happened, but is not exactly sure when it happened. To make calculations easier, I have been using a figure of 14 billion years ago; Our Science thinks it is closer to 13.8 billion. How did they get this figure and what if they are wrong?

If we want to label different galaxies so we can study their locations and motions when the universe was much younger, a time when the universe was much smaller, we need to know when the Big Bang occurred. This kind of labeling, this kind of study, may support or condemn one of our two competing theories.

Notice that if the Big Bang happened 14 billion years ago, the remote galaxies our instruments can detect are type 14 or type 13. On the other hand, if our universe is only 12 billion years old, these types do not exist and we are really seeing type 12 and type 11 objects.

If the universe started 14 billion years ago, it was half the present size 7 billions years ago; and one-fourth the size 10.5 billion years ago. If we live in a 12 billion year old universe, 10.5 billion years ago the universe would have been one-eighth the present size, i.e., only half as large. Pinpointing when the Big Bang occurred is very important.

Once we know exactly when the Big Bang happened, we may be able to decide if it happened at all.

One way BBT experts calculate the age of the universe is to use Cosmic Microwave Background (CMB) radiation maps. Two different instruments have been launched into space, one in 2001, the other in 2009. Both showed that the temperature everywhere in the observable universe was 2.725 degrees above absolute zero. These measurements were from the present day universe. Our Science apparently has no way to directly measure CMB when the universe was smaller.

Our Science does, however, feel that it can measure tiny fluctuations in the CMB as it pans across the universe. At one place, CMB may be 2.7249999. At another place, CMB may be 2.7250001. From this data, we can produce maps that show CMB at different points in the universe and average CMB – for example: 2.72499997. The map and average produced using the two instruments were slightly different – this resulted in a slightly different estimate for the age of our universe.

BBT experts believe that when our universe was just one-hundred-millionth the size it is today, the CMB was 273 million degrees (the universe at that time would still be 140 light years across – hardly a grain of sand). Based on this high temperature and the two estimates for the CMB today, the BBT experts felt they could figure out how old the universe was. The answer using data from one instrument was 13,772,000,000 years. Using data from the other, the answer was 13,820,000,000 years.

If the initial temperature, 273 million degrees is wrong, the calculated age of the universe would also change, perhaps drastically.

Despite, or maybe because of, Google, I have a hard time understanding how the BBT experts came up with 273 million degrees. I think they are saying this was the temperature when the universe was 70 years old (it had been expanding for 70 years and was now a bubble that light could cross in 140 years?). At this point, atoms of hydrogen could form. These atoms reflected light waves making the universe opaque, blocking our view of the earlier universe. After 380,000 years (during which time the atoms formed stars and galaxies – these could not be seen due to the opaqueness of the universe – it was like the universe was full of smoke), the now more diffuse atoms let light travel unimpeded. We could see things.

I have also seen estimates that the universe did not clear until it was much older. I am not sure how or if this affects the experts' calculations.

There are other ways to determine the distance to remote galaxies – those that we see when they were living in smaller versions of our universe. These techniques get complex fast, but one I might mention involves supernovae type 1a. A supernova is a star that suddenly increases greatly in brightness because of a catastrophic explosion that ejects most of its mass. A type 1a supernova, our cosmologists believes, occurs when a white dwarf star is accumulating matter from a nearby star. It can suddenly turn into a supernova, with a very high, but exact, specific brightness.

We believe that in a galaxy the size of ours, a type 1a supernova occurs about every fifty years. The last one reported was in 1680. We may be drastically overdue, but more likely, they have occurred toward or on the other side of the galactic center. Intervening stars or nebulae have blocked our view.

BBT experts believe they can determine how far away remote galaxies are by observing type 1a supernovae. If they see a supernova in a galaxy, they believe its apparent brightness is determined by how far away it is – this is an inverse square law – if you double your distance from a light source, it will appear one-fourth as bright. Since our experts believe any two type 1a supernovae have the same actual brightness, if one occurring in one galaxy appears one-fourth as bright as another in a second galaxy, the first galaxy is twice as far away.

We have today advanced instruments (I am thinking here of the Hubble Telescope) that can automatically survey many galaxies. If a type 1a supernova only happens every fifty years in a galaxy like ours, we must watch many galaxies simultaneously if we expect to see one. We have to monitor over 5000 galaxies to be likely to see one supernova every three days.

Buried in the data we have already received from Hubble may be strong support for either the BBT or the NNLT.

According to the BBT, our universe is 13.8 billion years old. Using type 1a supernovae, we can see galaxies that are, respectively, one-half, three-fourths, and seven-eighths of the distances to the Big Bang (or 6.9, 10.35, and 12.075 billion light years).

The NNLT thinks these remote galaxies and everything else is physically smaller. The BBT is not taking this into account when they look at supernovae. We should ignore galaxies we think are 6.9 billion light years away, and only be concerned with those 10.35, 12.075, and 12.9375 billion light years – in fact, when a BBT expert thinks he is seeing galaxies that are 6.9, 10.35, and 12.075, he is really seeing galaxies that are 10.35, 12.075, and 12.9375.

If our universe is indeed 13.8 billion years old, the NNLT can now make a remarkable prediction. NNLT believes that as you move toward the Big Bang, time passes more and more quickly. For a galaxy 10.35 billion light years away, time passes twice as fast, at 12.075 it is four times as fast, and at 12.9375, eight seconds pass for each second we experience. NNLT predicts that if Hubble has monitored 5000 galaxies at this distance, it will have recorded more supernovae than expected. Instead of seeing one about every four days, we would see one about every twelve hours.

It will be a blow to the NNLT if there is no difference in the number of supernovae observed as we move toward the Big Bang. Differences noted that do not conform to these predictions argue that our universe is not 13.8 billion years old.

We could assume other values for our universe's age and see if there is the predicted 2 – 4 – 8 to 1 time change (based on supernovae observed). For a 16 billion year old universe, for example, we should look at galaxies at 12, 14, and 15. For 14 billion, we should look at 10.5, 12.25, and 13.125; For 12 billion, look at 9, 10.5, and 11.25; For 10 billion, look at 7.5, 8.75, and 9.375; For 8 billion, look at 6, 7, and 7.5.

When we look at a star in the eastern sky and another in the western sky, the BBT tells us that the material in each star came from the Big Bang. If we could follow this material far enough back in distance and time, we would come to a single point, the Big Bang. No matter which way we gaze, we are always looking toward the Big Bang.

If the two stars we see could last forever, the BBT believes that half way to the Big Bang, when our universe was young, the distance between these two stars was half of what it is today. If we went back to the grain of sand universe, the distance between the two stars would be too small to measure. If the universe was a little older and the size of a marble, no matter which way we looked, it would be as if we were gazing down on almost the exact same spot on this small colored orb.

If reality were simple and as the BBT believes we are looking at only one Big Bang no matter which way we look, we might see the same galaxies as our different gazes move close to the Big Bang. Unfortunately, groups of galaxies near our own time can form gigantic gravitational lenses that bend the ancient light in myriad ways – the bottom line is how we see these early galaxies depends on the direction we gaze. Perhaps we could map the locations and strengths of these lenses and then correct our views – maybe we need glasses to look at the universe. Then we could see clearly galaxies near the Big Bang.

We know that there are large areas of space that contain few or any galaxies. The existence of the largest known was inferred (not observed) in 2013. This is the KBC void that is roughly spherical and is about two billion light years across. A couple of interesting facts that may or may be relevant: Our galaxy is in this void – if we are in the center, we would have to travel almost one-fourteenth of the way to the Big Bang to get out of it; and, there may be three million large galaxies within this void, yet it is so large it is still considered a void.

The KBC is inferred, not observed. Wikipedia explains: “The void has been used to explain the discrepancy between measurements of the Hubble constant using galactic supernovae and Cepheid variables (72-75 km/s/Mpc) and from the cosmic microwave background and baryon acoustic oscillation data (67-68 km/s/Mpc). Galaxies inside the void experience gravitational pull from matter outside the void, yielding a larger value for the Hubble constant”.

What if these “discrepancies between measurements” are not wrong? Can we find an explanation that does not require a sphere of nothingness that stretches across two billion light years?

There are voids in space we can view directly. The largest is the Giant Void in the Northern Galactic Hemisphere which was discovered in 1988. It is about two-thirds the size of the KBC.

When we look at voids we don't see remote, ancient galaxies. Perhaps gravitational lenses keep the Big Bang from ever appearing to lie in those directions.

Hubble discovered that our space is expanding faster than it did in the past. This fact conforms to the NNLT view of the universe, but BBT experts had to try to explain. They had expected space to expand rapidly carrying galaxies and clusters of galaxies outward. They wondered if the universe contained enough mass with its attached gravity to eventually stop the expansion. They saw two possibilities – it would expand, eventually stop, and shrink back until there was a Big Crunch; or, the universe would expand forever, always slowing but never stopping.

What Hubble saw, a universe whose rate of expansion was increasing, was shocking. We also found out that stars did not know how to properly revolve around the galactic center. How could we explain the strange things we were seeing?

Our resourceful BBT experts quickly decided to invent dark matter and dark energy. They calculated that the universe must be composed of 68% dark energy, 27% dark matter, and 5% normal matter. Now they could throw hidden energy or mass (gravity) where ever they needed it.

It is no wonder that cosmologists are married to the BBT. All other scientists, engineers, people can happily continue on, no matter what happens to the BBT. Want to build an atom bomb? - we know energy is equal to mass times the speed of light squared. Want to send a rocket to the moon? - use a bunch of calculus equations. Want to know how far away a city is? - look at a map, someone has already measured the distance and the distance will not change.

For the cosmologist it is different. If the BBT dies, he will have to reconsider every equation he has ever used in his career. Many, if not all, will have to be discarded. Old mountains of data will have to be leveled. New mountains will have to be built using new formulas and new calculations.

BBT experts believe that Hubble has recently found the most distance galaxy, GN-z11. Its distance is about 13.4 billion light years – meaning it formed about 400 million years after the Big Bang. GN-z11's distance was calculated by analyzing the red shift in its light.

Red Shift, Blue Shift – in our present universe, our scientists know the difference. If a light source, like a galaxy, is moving toward us, colors that make up the light will be shifted toward the blue end of the spectrum. The light source will appear blue. The faster it approaches, the greater the shift and the bluer the object appears. In fact, the light could be shifted to the ultraviolet which we can't see – but our instruments can. Red Shift is the opposite – when an object moves away, it becomes more red. The faster it moves away, the more red it becomes. GN-z11 is very red.

All of this has to do with whether or not a galaxy is approaching or moving away. The NNLT believes all of this has absolutely nothing to do with distance and all the headlines about Hubble finding new, distance galaxies are meaningless. We can expect the same after the more powerful James Webb Space Telescope is launched and becomes operational.

How and why do BBT experts think they can measure distances using red shift? The answer is a multi-step, logical process.

The first step is to believe that they know how to measure the energy of a photon. A photon is a unit or quanta of light. This is part of quantum physics that we know works in the modern universe. This photon is a small particle that can not be divided into smaller particles. We can measure the energy of a photon by noticing where it falls on a spectrum – if it is what we consider a “green” photon we know where its normal position is. If the light source is moving toward us, all the protons, including the green one, will be shifted and they will become bluer. A BBT expert would think the photons had more energy. The opposite is true and the photons become redder if the light source is approaching.

I hate to bring in math, but we can say that the BBT experts believe that the energy of our green photon is equal to planck's constant times the frequency of the light. You can think of the frequency as a reflection of the wave-like property of the photon. The more often the wave goes up and down each second, the higher the frequency. If the wave goes up and down less often each second, we could view the wave as more spread out and the frequency is less. Since planck's constant is constant, the energy of the photon increases (it becomes bluer) if the frequency increases and its energy decreases (it becomes redder) if the frequency decreases. The mathematical equation is E = hv where E is energy, h is planck's constant, and v is frequency.

*** ADDED 06-11-19

The NNLT thinks that h, planck's constant, is not constant. It is either directly, or indirectly dependent on the speed of light. The NNLT thinks the speed of light can change, the BBT does not.

If you think that the speed of light and planck values are not valid, you have to rethink every scientific equation developed for at least a century. Only then can you properly interpret what you see as you gaze back billions of light years.

The BBT experts believe h is a constant. The only way to explain the drop in photon energy observed when looking near the Big Bang is to assume the frequency has fallen. The photon's frequency was initially high. They may even tie this to the higher energy near the Big Bang and calculate CMB there. In a small universe, a galaxy doesn't have much room to move away rapidly.

As the light travels toward us, it passes through larger and larger universes – perhaps a better way of saying this is the light is in universes further and further from the Big Bang. The BBT believes that being in an expanded universe makes a photon's wave length stretch out – its frequency and energy drops and it becomes redder. If the speed of light is constant, the distance to the remote galaxy can be calculated, based on how red the galaxy appears. Strangely, BBT experts don't mind letting the size of the universe affect the frequency of light, but they adamantly refuse to let it change the speed of light.

The BBT is saying the energy of a photon is decreasing as it moves away from the Big Bang and its wavelength is stretched out by expanding space. If a photon from a remote galaxy came directly to earth it would have a certain energy – a certain brightness. Another photon from the same galaxy might be diverted by a gravitational lens, travel a much further distance, and then be diverted by another lens toward earth. According to the BBT, this photon would arrive with the same energy, the same brightness. We might be able, after all, to see the same galaxy in different parts of the night sky. Such observations would support the validity of the Big Bang Theory.

The BBT does not allow an early galaxy to move rapidly away – there is no room – but the red shift may show we are moving away more and more rapidly. This interpretation, as we have said, requires the invention of dark things with strange properties.

Can you imagine time not existing? If you can, maybe you should consider the Never Never Land Theory.

9-17-19 - Throughout this e-book, I have spoken of Never Never Land as being an "area" where time did not exist. A better view may be it is where all possible times exist.

I gave an analogy where I said #God was on the other side a mountain, but you could not get there from here.

Maybe surrounding the gazillions of possible times is something you can't get to from here. It is the hardest of all possible things. It is true timelessness. It has no thickness, but moving through it is impossible - because time is required for movement.

Does this mean my entire e-book needs to be rewritten? I don't have the TIME for that. So I will say "NO", my e-book does not need to be rewritten !!